

$$(4) =>(5)$$

$$\frac{Q_{ult}}{B} = q_s N_{\phi}^2 + \frac{1}{4} \gamma B N_{\phi}^{5/2} - \frac{1}{4} \gamma B N_{\phi}^{1/2}$$

$$\frac{Q_{ult}}{B} = q_s N_{\phi}^2 + \frac{\gamma B}{4} \left(N_{\phi}^{5/2} - N_{\phi}^{1/2} \right) \qquad (6)$$

$$N_q = N_{\phi}^2 = K_p^2$$

$$N_{\gamma} = \left(N_{\phi}^{5/2} - N_{\phi}^{1/2} \right) / 2 \right\} (7)$$

$$N_{\phi} = K_p = \frac{1 + \sin \varphi}{1 - \sin \phi} = \tan^2 \left(45^{\circ} + \frac{\phi}{2} \right) \qquad (8)$$

$$N_q \text{ and } N_{\gamma} \text{ in eq.}(7) \text{ are smaller than value derived by other method. compare eqs. (3) and (7)
ex) for $\phi = 30^{\circ} N_{q(3)} = 18, N_{q(7)} = 9; for \phi = 40^{\circ} N_{q(3)} = 64, N_{q(7)} = 21$

$$Why??$$
2007/12/20
$$Why??$$$$

Theoretical values of shape factors Bearing capacity of circular footing (**B/L~1**)can be solved by slip line method using cylindrical coordinate. $\frac{About F_{cs}}{q_{ult} of circular footing on \phi_u=0 material: 6.05c_u => F_{cs}=6.06/5.14=\underline{1.18}$ *good agreement* using eqs.(11) and (12) with $\phi_u=0$ and B/L=1, $F_{cs}=\underline{1.2 \text{ and } 1.19}$ $\frac{About F_{ys}}{Slip line method gives larger N_{\gamma} \text{ for circular F. than strip F. for the same <math>\phi$ value. That means $F_{\gamma s} > 1$, which is consistent with eq.(11) and inconsistent with eq.(12).

Key words to explain N_{γ} : stress dependency of ϕ ', strain constraint (or σ_2) effect on ϕ' and progressive failure or local failure.

2007/12/20	Stability Analyses in Geotech. Eng.	10
	by J. Takemura	

			Νγ					
N _u obtained from	φ	tan∳	smoot	th base	rough	n base		
alim line methoda			strip	circular	strip	circular		
sup une metnods	5	0.09	0.09	0.06	0.62	0.68		
Bolton et al. (1991)	10	0.18	0.29	0.21	1.71	1.37		
	15	0.27	0.71	0.60	3.17	2.83	$IN_{\gamma c}/IN_{\gamma p}$	
Can. Geotech. Vol.30,	20	0.36	1.60	1.30	5.97	6.04	$=\mathbf{F}$	
p.1024-1033.	25	0.47	3.51	3.00	11.6	13.5	$-1\gamma_{S}$	
	30	0.58	1.14	7.10	23.6	31.9	×	
for same & value	31	0.60	9.1	8.0	27.4	38.3	-0.86	
ioi saine ϕ value	32	0.62	10.7	10.3	31.8	40.1	0.00	
N. of strip (2D)	24	0.05	12.7	12.4	37.1	55.7		
	35	0.07	17.8	18.2	40.0 51.0	82.4		
	36	0.70	21	22	60	101		
N. of circular (3D)	37	0.75	25	27	71	124	• • • • •	
	38	0.78	30	33	85	153	, 0.84	
👢	39	0.81	36	40	101	190		
E > 1	40	0.84	44	51	121	238		
$\Gamma_{\gamma s} > 1$	41	0.87	53	62	145	299	E <1	
consistent with eq.(11)	42	0.90	65	78	176	379	$F_{\gamma s} \leq 1$	
$\frac{1}{1}$	43	0.93	79	99	214	480	aongistant	
inconsistent with eq.(12)	44	0.97	97	125	262	619	consistent	
	45	1.00	120	160	324	803	with	
	46	1.04	150	210	402	1052	eq.(12)	
Δ ² -11Δ ²	47	1.07	188	272	505	1384	1 \ /	
Ψ plane $\sim 1 \cdot 1 \Psi$ triaxial	48	1.11	237	353	638	1847		
	49	1.15	302	476	815	2491		
	50	1.19	389	621	1052	3403	1	
at small pressure: difference of ϕ is more: => smaller F_{ys} from <i>small scale test</i>								
2007/12/20 Stability Analyses in Geotech. Eng.						12		
by J. Takemura								

